3.1.27 \(\int \frac {1-x^4}{1-3 x^4+x^8} \, dx\) [27]

3.1.27.1 Optimal result
3.1.27.2 Mathematica [A] (verified)
3.1.27.3 Rubi [A] (verified)
3.1.27.4 Maple [C] (verified)
3.1.27.5 Fricas [B] (verification not implemented)
3.1.27.6 Sympy [A] (verification not implemented)
3.1.27.7 Maxima [F]
3.1.27.8 Giac [A] (verification not implemented)
3.1.27.9 Mupad [B] (verification not implemented)

3.1.27.1 Optimal result

Integrand size = 20, antiderivative size = 129 \[ \int \frac {1-x^4}{1-3 x^4+x^8} \, dx=\frac {\arctan \left (\sqrt {\frac {2}{-1+\sqrt {5}}} x\right )}{\sqrt {10 \left (-1+\sqrt {5}\right )}}+\frac {\arctan \left (\sqrt {\frac {2}{1+\sqrt {5}}} x\right )}{\sqrt {10 \left (1+\sqrt {5}\right )}}+\frac {\text {arctanh}\left (\sqrt {\frac {2}{-1+\sqrt {5}}} x\right )}{\sqrt {10 \left (-1+\sqrt {5}\right )}}+\frac {\text {arctanh}\left (\sqrt {\frac {2}{1+\sqrt {5}}} x\right )}{\sqrt {10 \left (1+\sqrt {5}\right )}} \]

output
arctan(x*2^(1/2)/(5^(1/2)-1)^(1/2))/(-10+10*5^(1/2))^(1/2)+arctanh(x*2^(1/ 
2)/(5^(1/2)-1)^(1/2))/(-10+10*5^(1/2))^(1/2)+arctan(x*2^(1/2)/(5^(1/2)+1)^ 
(1/2))/(10+10*5^(1/2))^(1/2)+arctanh(x*2^(1/2)/(5^(1/2)+1)^(1/2))/(10+10*5 
^(1/2))^(1/2)
 
3.1.27.2 Mathematica [A] (verified)

Time = 0.06 (sec) , antiderivative size = 129, normalized size of antiderivative = 1.00 \[ \int \frac {1-x^4}{1-3 x^4+x^8} \, dx=\frac {\arctan \left (\sqrt {\frac {2}{-1+\sqrt {5}}} x\right )}{\sqrt {10 \left (-1+\sqrt {5}\right )}}+\frac {\arctan \left (\sqrt {\frac {2}{1+\sqrt {5}}} x\right )}{\sqrt {10 \left (1+\sqrt {5}\right )}}+\frac {\text {arctanh}\left (\sqrt {\frac {2}{-1+\sqrt {5}}} x\right )}{\sqrt {10 \left (-1+\sqrt {5}\right )}}+\frac {\text {arctanh}\left (\sqrt {\frac {2}{1+\sqrt {5}}} x\right )}{\sqrt {10 \left (1+\sqrt {5}\right )}} \]

input
Integrate[(1 - x^4)/(1 - 3*x^4 + x^8),x]
 
output
ArcTan[Sqrt[2/(-1 + Sqrt[5])]*x]/Sqrt[10*(-1 + Sqrt[5])] + ArcTan[Sqrt[2/( 
1 + Sqrt[5])]*x]/Sqrt[10*(1 + Sqrt[5])] + ArcTanh[Sqrt[2/(-1 + Sqrt[5])]*x 
]/Sqrt[10*(-1 + Sqrt[5])] + ArcTanh[Sqrt[2/(1 + Sqrt[5])]*x]/Sqrt[10*(1 + 
Sqrt[5])]
 
3.1.27.3 Rubi [A] (verified)

Time = 0.25 (sec) , antiderivative size = 155, normalized size of antiderivative = 1.20, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {1749, 1406, 216, 220}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1-x^4}{x^8-3 x^4+1} \, dx\)

\(\Big \downarrow \) 1749

\(\displaystyle -\frac {1}{2} \int \frac {1}{x^4-x^2-1}dx-\frac {1}{2} \int \frac {1}{x^4+x^2-1}dx\)

\(\Big \downarrow \) 1406

\(\displaystyle \frac {1}{2} \left (\frac {\int \frac {1}{x^2+\frac {1}{2} \left (-1+\sqrt {5}\right )}dx}{\sqrt {5}}-\frac {\int \frac {1}{x^2+\frac {1}{2} \left (-1-\sqrt {5}\right )}dx}{\sqrt {5}}\right )+\frac {1}{2} \left (\frac {\int \frac {1}{x^2+\frac {1}{2} \left (1+\sqrt {5}\right )}dx}{\sqrt {5}}-\frac {\int \frac {1}{x^2+\frac {1}{2} \left (1-\sqrt {5}\right )}dx}{\sqrt {5}}\right )\)

\(\Big \downarrow \) 216

\(\displaystyle \frac {1}{2} \left (\sqrt {\frac {2}{5 \left (\sqrt {5}-1\right )}} \arctan \left (\sqrt {\frac {2}{\sqrt {5}-1}} x\right )-\frac {\int \frac {1}{x^2+\frac {1}{2} \left (-1-\sqrt {5}\right )}dx}{\sqrt {5}}\right )+\frac {1}{2} \left (\sqrt {\frac {2}{5 \left (1+\sqrt {5}\right )}} \arctan \left (\sqrt {\frac {2}{1+\sqrt {5}}} x\right )-\frac {\int \frac {1}{x^2+\frac {1}{2} \left (1-\sqrt {5}\right )}dx}{\sqrt {5}}\right )\)

\(\Big \downarrow \) 220

\(\displaystyle \frac {1}{2} \left (\sqrt {\frac {2}{5 \left (1+\sqrt {5}\right )}} \arctan \left (\sqrt {\frac {2}{1+\sqrt {5}}} x\right )+\sqrt {\frac {2}{5 \left (\sqrt {5}-1\right )}} \text {arctanh}\left (\sqrt {\frac {2}{\sqrt {5}-1}} x\right )\right )+\frac {1}{2} \left (\sqrt {\frac {2}{5 \left (\sqrt {5}-1\right )}} \arctan \left (\sqrt {\frac {2}{\sqrt {5}-1}} x\right )+\sqrt {\frac {2}{5 \left (1+\sqrt {5}\right )}} \text {arctanh}\left (\sqrt {\frac {2}{1+\sqrt {5}}} x\right )\right )\)

input
Int[(1 - x^4)/(1 - 3*x^4 + x^8),x]
 
output
(Sqrt[2/(5*(1 + Sqrt[5]))]*ArcTan[Sqrt[2/(1 + Sqrt[5])]*x] + Sqrt[2/(5*(-1 
 + Sqrt[5]))]*ArcTanh[Sqrt[2/(-1 + Sqrt[5])]*x])/2 + (Sqrt[2/(5*(-1 + Sqrt 
[5]))]*ArcTan[Sqrt[2/(-1 + Sqrt[5])]*x] + Sqrt[2/(5*(1 + Sqrt[5]))]*ArcTan 
h[Sqrt[2/(1 + Sqrt[5])]*x])/2
 

3.1.27.3.1 Defintions of rubi rules used

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 220
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[b, 2])^(- 
1))*ArcTanh[Rt[b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && 
 (LtQ[a, 0] || GtQ[b, 0])
 

rule 1406
Int[((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(-1), x_Symbol] :> With[{q = Rt[b^ 
2 - 4*a*c, 2]}, Simp[c/q   Int[1/(b/2 - q/2 + c*x^2), x], x] - Simp[c/q   I 
nt[1/(b/2 + q/2 + c*x^2), x], x]] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c 
, 0] && PosQ[b^2 - 4*a*c]
 

rule 1749
Int[((d_) + (e_.)*(x_)^(n_))/((a_) + (b_.)*(x_)^(n_) + (c_.)*(x_)^(n2_)), x 
_Symbol] :> With[{q = Rt[2*(d/e) - b/c, 2]}, Simp[e/(2*c)   Int[1/Simp[d/e 
+ q*x^(n/2) + x^n, x], x], x] + Simp[e/(2*c)   Int[1/Simp[d/e - q*x^(n/2) + 
 x^n, x], x], x]] /; FreeQ[{a, b, c, d, e}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 
 4*a*c, 0] && EqQ[c*d^2 - a*e^2, 0] && IGtQ[n/2, 0] && (GtQ[2*(d/e) - b/c, 
0] || ( !LtQ[2*(d/e) - b/c, 0] && EqQ[d, e*Rt[a/c, 2]]))
 
3.1.27.4 Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 0.09 (sec) , antiderivative size = 64, normalized size of antiderivative = 0.50

method result size
risch \(\frac {\left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (25 \textit {\_Z}^{4}-5 \textit {\_Z}^{2}-1\right )}{\sum }\textit {\_R} \ln \left (-5 \textit {\_R}^{3}+3 \textit {\_R} +x \right )\right )}{4}+\frac {\left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (25 \textit {\_Z}^{4}+5 \textit {\_Z}^{2}-1\right )}{\sum }\textit {\_R} \ln \left (5 \textit {\_R}^{3}+3 \textit {\_R} +x \right )\right )}{4}\) \(64\)
default \(\frac {\sqrt {5}\, \operatorname {arctanh}\left (\frac {2 x}{\sqrt {2 \sqrt {5}+2}}\right )}{5 \sqrt {2 \sqrt {5}+2}}+\frac {\sqrt {5}\, \arctan \left (\frac {2 x}{\sqrt {2 \sqrt {5}-2}}\right )}{5 \sqrt {2 \sqrt {5}-2}}+\frac {\sqrt {5}\, \arctan \left (\frac {2 x}{\sqrt {2 \sqrt {5}+2}}\right )}{5 \sqrt {2 \sqrt {5}+2}}+\frac {\sqrt {5}\, \operatorname {arctanh}\left (\frac {2 x}{\sqrt {2 \sqrt {5}-2}}\right )}{5 \sqrt {2 \sqrt {5}-2}}\) \(110\)

input
int((-x^4+1)/(x^8-3*x^4+1),x,method=_RETURNVERBOSE)
 
output
1/4*sum(_R*ln(-5*_R^3+3*_R+x),_R=RootOf(25*_Z^4-5*_Z^2-1))+1/4*sum(_R*ln(5 
*_R^3+3*_R+x),_R=RootOf(25*_Z^4+5*_Z^2-1))
 
3.1.27.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 285 vs. \(2 (93) = 186\).

Time = 0.29 (sec) , antiderivative size = 285, normalized size of antiderivative = 2.21 \[ \int \frac {1-x^4}{1-3 x^4+x^8} \, dx=\frac {1}{40} \, \sqrt {10} \sqrt {\sqrt {5} - 1} \log \left (\sqrt {10} {\left (\sqrt {5} + 5\right )} \sqrt {\sqrt {5} - 1} + 20 \, x\right ) - \frac {1}{40} \, \sqrt {10} \sqrt {\sqrt {5} - 1} \log \left (-\sqrt {10} {\left (\sqrt {5} + 5\right )} \sqrt {\sqrt {5} - 1} + 20 \, x\right ) - \frac {1}{40} \, \sqrt {10} \sqrt {\sqrt {5} + 1} \log \left (\sqrt {10} \sqrt {\sqrt {5} + 1} {\left (\sqrt {5} - 5\right )} + 20 \, x\right ) + \frac {1}{40} \, \sqrt {10} \sqrt {\sqrt {5} + 1} \log \left (-\sqrt {10} \sqrt {\sqrt {5} + 1} {\left (\sqrt {5} - 5\right )} + 20 \, x\right ) + \frac {1}{40} \, \sqrt {10} \sqrt {-\sqrt {5} + 1} \log \left (\sqrt {10} {\left (\sqrt {5} + 5\right )} \sqrt {-\sqrt {5} + 1} + 20 \, x\right ) - \frac {1}{40} \, \sqrt {10} \sqrt {-\sqrt {5} + 1} \log \left (-\sqrt {10} {\left (\sqrt {5} + 5\right )} \sqrt {-\sqrt {5} + 1} + 20 \, x\right ) - \frac {1}{40} \, \sqrt {10} \sqrt {-\sqrt {5} - 1} \log \left (\sqrt {10} {\left (\sqrt {5} - 5\right )} \sqrt {-\sqrt {5} - 1} + 20 \, x\right ) + \frac {1}{40} \, \sqrt {10} \sqrt {-\sqrt {5} - 1} \log \left (-\sqrt {10} {\left (\sqrt {5} - 5\right )} \sqrt {-\sqrt {5} - 1} + 20 \, x\right ) \]

input
integrate((-x^4+1)/(x^8-3*x^4+1),x, algorithm="fricas")
 
output
1/40*sqrt(10)*sqrt(sqrt(5) - 1)*log(sqrt(10)*(sqrt(5) + 5)*sqrt(sqrt(5) - 
1) + 20*x) - 1/40*sqrt(10)*sqrt(sqrt(5) - 1)*log(-sqrt(10)*(sqrt(5) + 5)*s 
qrt(sqrt(5) - 1) + 20*x) - 1/40*sqrt(10)*sqrt(sqrt(5) + 1)*log(sqrt(10)*sq 
rt(sqrt(5) + 1)*(sqrt(5) - 5) + 20*x) + 1/40*sqrt(10)*sqrt(sqrt(5) + 1)*lo 
g(-sqrt(10)*sqrt(sqrt(5) + 1)*(sqrt(5) - 5) + 20*x) + 1/40*sqrt(10)*sqrt(- 
sqrt(5) + 1)*log(sqrt(10)*(sqrt(5) + 5)*sqrt(-sqrt(5) + 1) + 20*x) - 1/40* 
sqrt(10)*sqrt(-sqrt(5) + 1)*log(-sqrt(10)*(sqrt(5) + 5)*sqrt(-sqrt(5) + 1) 
 + 20*x) - 1/40*sqrt(10)*sqrt(-sqrt(5) - 1)*log(sqrt(10)*(sqrt(5) - 5)*sqr 
t(-sqrt(5) - 1) + 20*x) + 1/40*sqrt(10)*sqrt(-sqrt(5) - 1)*log(-sqrt(10)*( 
sqrt(5) - 5)*sqrt(-sqrt(5) - 1) + 20*x)
 
3.1.27.6 Sympy [A] (verification not implemented)

Time = 0.68 (sec) , antiderivative size = 51, normalized size of antiderivative = 0.40 \[ \int \frac {1-x^4}{1-3 x^4+x^8} \, dx=- \operatorname {RootSum} {\left (6400 t^{4} - 80 t^{2} - 1, \left ( t \mapsto t \log {\left (25600 t^{5} - 16 t + x \right )} \right )\right )} - \operatorname {RootSum} {\left (6400 t^{4} + 80 t^{2} - 1, \left ( t \mapsto t \log {\left (25600 t^{5} - 16 t + x \right )} \right )\right )} \]

input
integrate((-x**4+1)/(x**8-3*x**4+1),x)
 
output
-RootSum(6400*_t**4 - 80*_t**2 - 1, Lambda(_t, _t*log(25600*_t**5 - 16*_t 
+ x))) - RootSum(6400*_t**4 + 80*_t**2 - 1, Lambda(_t, _t*log(25600*_t**5 
- 16*_t + x)))
 
3.1.27.7 Maxima [F]

\[ \int \frac {1-x^4}{1-3 x^4+x^8} \, dx=\int { -\frac {x^{4} - 1}{x^{8} - 3 \, x^{4} + 1} \,d x } \]

input
integrate((-x^4+1)/(x^8-3*x^4+1),x, algorithm="maxima")
 
output
-integrate((x^4 - 1)/(x^8 - 3*x^4 + 1), x)
 
3.1.27.8 Giac [A] (verification not implemented)

Time = 0.48 (sec) , antiderivative size = 147, normalized size of antiderivative = 1.14 \[ \int \frac {1-x^4}{1-3 x^4+x^8} \, dx=\frac {1}{20} \, \sqrt {10 \, \sqrt {5} - 10} \arctan \left (\frac {x}{\sqrt {\frac {1}{2} \, \sqrt {5} + \frac {1}{2}}}\right ) + \frac {1}{20} \, \sqrt {10 \, \sqrt {5} + 10} \arctan \left (\frac {x}{\sqrt {\frac {1}{2} \, \sqrt {5} - \frac {1}{2}}}\right ) + \frac {1}{40} \, \sqrt {10 \, \sqrt {5} - 10} \log \left ({\left | x + \sqrt {\frac {1}{2} \, \sqrt {5} + \frac {1}{2}} \right |}\right ) - \frac {1}{40} \, \sqrt {10 \, \sqrt {5} - 10} \log \left ({\left | x - \sqrt {\frac {1}{2} \, \sqrt {5} + \frac {1}{2}} \right |}\right ) + \frac {1}{40} \, \sqrt {10 \, \sqrt {5} + 10} \log \left ({\left | x + \sqrt {\frac {1}{2} \, \sqrt {5} - \frac {1}{2}} \right |}\right ) - \frac {1}{40} \, \sqrt {10 \, \sqrt {5} + 10} \log \left ({\left | x - \sqrt {\frac {1}{2} \, \sqrt {5} - \frac {1}{2}} \right |}\right ) \]

input
integrate((-x^4+1)/(x^8-3*x^4+1),x, algorithm="giac")
 
output
1/20*sqrt(10*sqrt(5) - 10)*arctan(x/sqrt(1/2*sqrt(5) + 1/2)) + 1/20*sqrt(1 
0*sqrt(5) + 10)*arctan(x/sqrt(1/2*sqrt(5) - 1/2)) + 1/40*sqrt(10*sqrt(5) - 
 10)*log(abs(x + sqrt(1/2*sqrt(5) + 1/2))) - 1/40*sqrt(10*sqrt(5) - 10)*lo 
g(abs(x - sqrt(1/2*sqrt(5) + 1/2))) + 1/40*sqrt(10*sqrt(5) + 10)*log(abs(x 
 + sqrt(1/2*sqrt(5) - 1/2))) - 1/40*sqrt(10*sqrt(5) + 10)*log(abs(x - sqrt 
(1/2*sqrt(5) - 1/2)))
 
3.1.27.9 Mupad [B] (verification not implemented)

Time = 0.10 (sec) , antiderivative size = 269, normalized size of antiderivative = 2.09 \[ \int \frac {1-x^4}{1-3 x^4+x^8} \, dx=-\frac {\sqrt {10}\,\mathrm {atan}\left (\frac {\sqrt {10}\,x\,\sqrt {\sqrt {5}-1}\,3{}\mathrm {i}}{2\,\left (3\,\sqrt {5}-7\right )}-\frac {\sqrt {5}\,\sqrt {10}\,x\,\sqrt {\sqrt {5}-1}\,7{}\mathrm {i}}{10\,\left (3\,\sqrt {5}-7\right )}\right )\,\sqrt {\sqrt {5}-1}\,1{}\mathrm {i}}{20}-\frac {\sqrt {10}\,\mathrm {atan}\left (\frac {\sqrt {10}\,x\,\sqrt {\sqrt {5}+1}\,3{}\mathrm {i}}{2\,\left (3\,\sqrt {5}+7\right )}+\frac {\sqrt {5}\,\sqrt {10}\,x\,\sqrt {\sqrt {5}+1}\,7{}\mathrm {i}}{10\,\left (3\,\sqrt {5}+7\right )}\right )\,\sqrt {\sqrt {5}+1}\,1{}\mathrm {i}}{20}+\frac {\sqrt {10}\,\mathrm {atan}\left (\frac {\sqrt {10}\,x\,\sqrt {1-\sqrt {5}}\,3{}\mathrm {i}}{2\,\left (3\,\sqrt {5}-7\right )}-\frac {\sqrt {5}\,\sqrt {10}\,x\,\sqrt {1-\sqrt {5}}\,7{}\mathrm {i}}{10\,\left (3\,\sqrt {5}-7\right )}\right )\,\sqrt {1-\sqrt {5}}\,1{}\mathrm {i}}{20}+\frac {\sqrt {10}\,\mathrm {atan}\left (\frac {\sqrt {10}\,x\,\sqrt {-\sqrt {5}-1}\,3{}\mathrm {i}}{2\,\left (3\,\sqrt {5}+7\right )}+\frac {\sqrt {5}\,\sqrt {10}\,x\,\sqrt {-\sqrt {5}-1}\,7{}\mathrm {i}}{10\,\left (3\,\sqrt {5}+7\right )}\right )\,\sqrt {-\sqrt {5}-1}\,1{}\mathrm {i}}{20} \]

input
int(-(x^4 - 1)/(x^8 - 3*x^4 + 1),x)
 
output
(10^(1/2)*atan((10^(1/2)*x*(1 - 5^(1/2))^(1/2)*3i)/(2*(3*5^(1/2) - 7)) - ( 
5^(1/2)*10^(1/2)*x*(1 - 5^(1/2))^(1/2)*7i)/(10*(3*5^(1/2) - 7)))*(1 - 5^(1 
/2))^(1/2)*1i)/20 - (10^(1/2)*atan((10^(1/2)*x*(5^(1/2) + 1)^(1/2)*3i)/(2* 
(3*5^(1/2) + 7)) + (5^(1/2)*10^(1/2)*x*(5^(1/2) + 1)^(1/2)*7i)/(10*(3*5^(1 
/2) + 7)))*(5^(1/2) + 1)^(1/2)*1i)/20 - (10^(1/2)*atan((10^(1/2)*x*(5^(1/2 
) - 1)^(1/2)*3i)/(2*(3*5^(1/2) - 7)) - (5^(1/2)*10^(1/2)*x*(5^(1/2) - 1)^( 
1/2)*7i)/(10*(3*5^(1/2) - 7)))*(5^(1/2) - 1)^(1/2)*1i)/20 + (10^(1/2)*atan 
((10^(1/2)*x*(- 5^(1/2) - 1)^(1/2)*3i)/(2*(3*5^(1/2) + 7)) + (5^(1/2)*10^( 
1/2)*x*(- 5^(1/2) - 1)^(1/2)*7i)/(10*(3*5^(1/2) + 7)))*(- 5^(1/2) - 1)^(1/ 
2)*1i)/20